地下水利用型地中熱利用ヒートポンプシステムと 藤のさとセンターでの実績

An accomplishment of the groundwater heat pump system at Fujinosato Center 池内研・阿部孝男・高杉真司(Geo-E)・芝芳郎(ゼネラルヒートポンプ工業(株)) K. Ikeuchi, T. Abe, S. Takasugi and Y. Shiba

1. はじめに

新潟県糸魚川市では、市内下早川地区公民館として、2000 年 6 月から翌年 1 月にかけて藤のさとセンターを建設した。本センターの冷暖房には、エコアイスと組み合わせた地下水を利用した地中熱利用ヒートポンプシステムを採用した。本報告では、筆者らが施工した藤のさとセンターの地中熱利用ヒートポンプシステムについて報告する。

2. 地下水利用型地中熱利用ヒートポンプシステム

冷暖房、給湯、融雪等に使用される地中熱利用ヒートポンプシステムは、大きく分けて次の2種類に分類される。一つは、地下水を熱輸送媒体として直接ヒートポンプと熱交換する Open system であり、一つは主に不凍液を熱輸送媒体として地中とヒートポンプとを熱交換する Closed System である。

Open System では、地下水を汲み上げさらに地下還元する必要があることから、以下の地域特性が必要である。

- ①地下水を汲み上げ・還元できる十分な透水性がある。
- ②季節変動が少なく、冷暖房に必要な十分な水量を確保できる。
- ③地下水の質がよい(鉄分が少ない、スケール付着や腐食の問題がない、還元井の目 詰まりがない、天候の影響による濁りが少ない)

藤のさとセンター周辺の下早川地区は、質の良い地下水が豊富にあり、上記の条件を 十分に満たしている。

3. 藤のさとセンターでの冷房運転

藤のさとセンターの冷房運転状況を第1表に示す。この期間中で昼間運転が行われたのは2日間であった。これは、8月下旬という時期的なものと、この期間にあまり施設が使用されなかったためである。

全区間を通しての熱源機 COP(成績係数:入力に対する出力の比率)は、5.7と非常に 良好であった。

4. おわりに

今後、藤のさとセンターでは、冬季暖房のより効率的な運転方法を検討するために、 継続して観測を行っていく予定である。運転観測データは、糸魚川市教育委員会のご協 力ものと採取している。

第1表			ター冷息			2001年8		28日)	## ## ##
観測月日		8/22	8/23	8/24	8/25	8/26	8/27	8/28	期間計
	昼間	なし	6.3	なし	5.2	なし	なし	なし	5.1
熱源機COP	夜間	6.0	5.8	5.7	5.7	5.7	5.6	5.6	5.8
	総合	6.0	6.0	5.7	6.1	5.7	5.6	5.5	5.7
生成熱量 (kWh)	昼間	0.0	40.2	0.0	18.8	0.0	0.0	0.0	59.0
	夜間	201.8	127.3	187.7	131.8	129.8	119.4	76.3	974.1
	総合	201.8	167.5	187.7	150.6	129.8	119.4	76.3	1033.1
熱源消費電力	昼間	0.3	6.4	0.3	3.6	0.3	0.3	0.3	11.5
	夜間	33.5	21.9	32.9	23.0	23.0	21.2	13.7	169.2
(kWh)	総合	33.8	28.3	33.2	26.6	23.3	21.5	14.0	180.7
地中排熱量	(kJ)	811.4	675.3	734.4	661.5	532.7	489.5	321.9	4226.7
還元井戸温度	(℃)	14.2	14.2	14.2	14.4	14.2	14.2	14.2	14.2

第1表 藤のさとセンター冷屋運転解析結果 (2001年8月22~28月)